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Problem overview 

 Given 
• A knowledge graph stored as a set of subject-relation-object triples 

𝒯+ = 𝑠, 𝑟, 𝑜 , where 𝑠, 𝑜 ∈ ℰ are entities and 𝑟 ∈ ℛ is a relation 

• No entity/relation features or extra information is used 

 Aim 
• To learn distributed representations of entities and relations which can 

preserve the inherent structure of the original graph 

 Procedure 
• Define an encoder (a mapping from entities/relations to embeddings)  

• Define a triple scoring function (a measure of validity of triples in the 
embedding space) 

• Optimize the encoder parameters (entity/relation embeddings) 

 



Learning distributed representations 

 Encoder maps entities and relations to their embeddings 
(what to be learned) 
• Entities are represented as points in the embedding space, i.e., vectors 

• Relations are operations between entities, usually represented as vectors, 
but sometimes as matrices or tensors 

 Encoder = Embedding-lookup 

Encoding 𝑒 = 𝐞 = 

0
⋮
⋮
1
⋮
0

 × 

entity embedding matrix 

vector embedding for 
the specific entity 

dimension indicating 
the specific entity 

Encoding 𝑟 = 𝐫 = 

0
⋮
1
⋮
⋮
0

 × 

relation embedding matrix 

vector embedding for 
the specific relation 

dimension indicating 
the specific relation 



Learning distributed representations (cont.) 

 Triple scoring function specifies how the validity of a triple is 
measured by its entity and relation embeddings 
• TransE and its variations 

• RESCAL and its variations 

• Deep neural network architectures 

 Optimize entity and relation embeddings by maximizing total 
validity of triples observed in the graph 
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TransE (Bordes et al., 2013) 

 Translation assumption: Relations as translations operating on 
entity embeddings, i.e., 𝐬 + 𝐫 ≈ 𝐨 when 𝑠, 𝑟, 𝑜  holds 
• 𝐂𝐂𝐂𝐂𝐂 − 𝐁𝐁𝐁𝐁𝐁𝐁𝐁 = 𝐈𝐈𝐈𝐈𝐈 − 𝐑𝐑𝐑𝐑 = 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 

• 𝐁𝐁𝐁𝐁𝐁𝐁𝐁 + 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 = 𝐂𝐂𝐂𝐂𝐂 

• 𝐑𝐑𝐑𝐑 + 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 = 𝐈𝐈𝐈𝐈𝐈 

 



Deficiencies in TransE 

 Ineffective in dealing with reflexive/many-to-one/one-to-many 
relations 
• Reflexive  relations:  

 

 

 

• Many-to-one relations: 
 

 

 

 

• One-to-many relations:  

 



Improving TransE 

 Introducing relation-specific entity embeddings 
• TransH (Wang et al., 2014) projects entities  into relation-specific 

hyperplanes 

• TransR (Lin et al., 2015) projects entities into relation-specific  spaces 

 TransH TransR 



Improving TransE (cont.) 

 Relaxing translation assumption 𝐬 + 𝐫 ≈ 𝐨 
• TransM (Fan et al., 2014) assigns lower weights to one-to-many/many-

to-one/many-to-many relations so that 𝐨 can lie far apart from 𝐬 + 𝐫 in 
these relations 

 
• TransF (Feng et al., 2016) only requires 𝐨 to lie in the same direction with 

𝐬 + 𝐫, and 𝐬 in the same direction with 𝐨 − 𝐫 

 
• ManifoldE (Xiao et al., 2016a) allows 𝐨 to lie approximately on a manifold, 

i.e., a hyper-sphere centered at 𝐬 + 𝐫 with radius 𝜃𝑟 

 



Gaussian embeddings 

 To model uncertainties of entities and relations 

Uncertainties of entities 

Uncertainties of relations 



Gaussian embeddings (cont.) 

 KG2E (He et al., 2015) represents entities/relations as random 
vectors drawn from multivariate Gaussian distributions 
• Entity/relation embeddings 

 

 

 

 

• Modeling assumption 

 
 

• Triple scoring function 

 Kullback-Leibler divergence 

 Probability inner product 

A larger covariance matrix (determinant or trace)  
indicates a higher level of uncertainty 



Gaussian embeddings (cont.) 

 Covariance matrices and uncertainties of Freebase relations 
learned by KG2E (He et al., 2015) 

un
ce

rt
ai

nt
ie

s 



Multiple relation semantics 

 A relation may have multiple meanings revealed by entity 
pairs associated with the corresponding triples 

• test 

• Visualization of TransE embeddings 
𝐨 − 𝐬 for different relation 𝑟, where 
𝑠, 𝑟, 𝑜 ∈ 𝒯+ 

• Different clusters indicate different 
relation semantics, e.g., composition 
and location for the hasPart relation  

Material based on: Xiao et al. (2016). TransG : A generative model for knowledge graph embedding. ACL’16.  



Multiple relation semantics (cont.) 

 TransG (Xiao et al., 2016b) models multiple relation semantics 
by mixtures of Gaussians   
• Entity embeddings: Random vectors drawn from Gaussian distributions 

 

 

• Relation embeddings: Mixtures of Gaussians 

 

 

• Triple scoring function: A mixture of translational distances introduced 
by different semantics of a relation 



Multiple relation semantics (cont.) 

 Different semantics of Freebase/WordNet relations learned by 
TransG (Xiao et al., 2016b) 



Summary of the TransE family  

 Summary of entity/relation embedding and scoring functions 

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.  



Summary of the TransE family (cont.)  

 Comparison in space and time complexity 

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.  

TransR introduces for each relation 
𝑟 a projection matrix 𝐌𝑟 ∈ ℝ𝑘×𝑑  

TransG models each relation as a 
mixture of 𝑐 Gaussian distributions 
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RESCAL (Nickel et al., 2011) 

 Bilinear matching: Capturing pairwise interactions between all 
dimensions of subject and object entity embeddings 
• Entity/relation embeddings 

 

 

• Triple scoring function 

• Space complexity: 𝒪(𝑑2) per relation 

• Time complexity: 𝒪(𝑑2)  



DistMult (Yang et al., 2015) 

 Simplify RESCAL by restricting 𝐌𝑟 to diagonal matrices 
• Entity/relation embeddings 

 

 

• Triple scoring function 

• Space complexity: 𝒪(𝑑) 

• Time complexity: 𝒪(𝑑)  

• Suitable only for symmetric relations  
𝑓 𝑠, 𝑟, 𝑜 = 𝑓(𝑜, 𝑟, 𝑠) 



Holographic embeddings (HolE) (Nickel et al., 2016) 

 Combine expressiveness of RESCAL with simplicity of DistMult 
• Entity/relation embeddings 

 

 

• Triple scoring function 

• Space complexity: 𝒪(𝑑) 

• Time complexity: 𝒪(𝑑 log𝑑)  

• Suitable for asymmetric relations  
𝑓 𝑠, 𝑟, 𝑜 ≠ 𝑓(𝑜, 𝑟, 𝑠) 

(circular correlation:                             ) 



Complex embeddings (ComplEx) (Trouillon et al., 2016) 

 Extend DistMult by introducing complex-valued embeddings 
so as to better model asymmetric relations 
• Entity/relation embeddings 

 

 

• Triple scoring function 

• Space complexity: 𝒪(𝑑) 

• Time complexity: 𝒪(𝑑)  

• Suitable for asymmetric relations  
𝑓 𝑠, 𝑟, 𝑜 ≠ 𝑓(𝑜, 𝑟, 𝑠) 

conjugate of 𝐨 

real part of a complex value 



Analogical inference 

 Analogical properties of entities and relations 

nucleus is to electrons as sun is to planets 

electrons is to charge as planets is to mass 

nucleus is to charge as sun is to mass 

(nucleus, attract, charge) 

Material based on: Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML’17.  



 Modeling analogical properties 
Analogy:  a is to b as c is to d 

 

 

 

 

Commutativity:                             (compositional equivalence)  

 The ANALOGY model 

ANALOGY (Liu et al., 2017) 



Summary of the RESCAL family  

 Relationships between different methods 

Material based on: Hayashi and Masashi (2017). On the equivalence of holographic and complex embeddings for link prediction. ACL’17. 
                               Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML’17. 



Summary of the RESCAL family (cont.)  

 Summary of entity/relation embedding and scoring functions 

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.  



Summary of the RESCAL family (cont.)  

 Comparison in space and time complexity 

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.  

RESCAL models each relation 𝑟 as a 
projection matrix 𝐌𝑟 ∈ ℝ𝑑×𝑑  

Projection matrices can be block-
diagonalized into a set of almost-
diagonal matrices, each has 𝒪 𝑑  
free parameters 

Circular correlation is calculated via 
discrete Fourier transform whose 
time complexity is 𝒪(𝑑 log𝑑) 
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Semantic matching energy (SME) (Bordes et al., 2014)  

 Combine relation with subject to get 𝑔𝑢, with object to get 𝑔𝑣, 
and match 𝑔𝑢 and 𝑔𝑣 by dot product 

# parameters: 𝒪(𝑛𝑑 + 𝑚𝑚) 



Multi-layer perceptron (MLP) (Dong et al., 2014)  

 Concatenate subject, relation, object as input, and employ a 
standard multi-layer perceptron 

# parameters: 𝒪(𝑛𝑑 + 𝑚𝑚) 



Neural tensor network (NTN) (Socher et al., 2013)  

 An expressive neural network that models relations as tensors 
(along with matrices and vectors) 

# parameters: 𝒪(𝑛𝑑 + 𝑚𝑑2𝑘) 

s o 

tanh 



Neural association model (NAM) (Liu et al., 2016)  

 Model subject-relation-object triples with a deep architecture 

subject entity vector relation vector subject entity vector relation vector 

object entity vector object entity vector 
# parameters:  
𝒪(𝑛𝑑 + 𝑚𝑚) 



Relational graph convolutional network (R-GCN) (Schlichtkrull et al., 2018) 

 Message passing on knowledge graphs with relation-specific 
transformations (type + direction) 

# parameters: 𝒪(𝑛𝑑𝐿 + 𝑚𝑚𝑚) 



Convolutional 2D embeddings (ConvE) (Dettmers et al., 2018)  

 Reshape subject/relation vectors into matrices, and apply 2D 
convolution across concatenated input 

s 
r 

# parameters: 𝒪(𝑛𝑑 + 𝑚𝑑′) 

𝝎 



ConvKB (Nguyen et al., 2018)  

 Concatenate subject/relation/object vectors into 𝑑 × 3 matrices, 
and conduct convolution with multiple 1 × 3 filters 

# parameters: 𝒪(𝑛𝑑 + 𝑚𝑚) 

s   r   o 

[s, r, o] 

𝝎1 

𝝎2 

𝝎3 

ConvKB = TransE 



Comparison among different methods  

 Link prediction performance (%) on WN18 and FB15k 

¹Results taken from: Nickel et al. (2016). Holographic embeddings of knowledge graphs. AAAI’16. 
²Results taken from: Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML’17. 
³Results taken from: Dettmers et al. (2018). Convolutional 2D knowledge graph embeddings. AAAI’18. 

WN18 FB15k 

MRR MRR Hits@1 Hits@3 Hits@10 MRR MRR Hits@1 Hits@3 Hits@10 

(filt.) (raw) (filt.) (filt.) (filt.) (filt.) (raw) (filt.) (filt.) (filt.) 

TransE¹ 49.5 35.1 11.3 88.8 94.3 46.3 22.2 29.7 57.8 74.9 

TransR¹ 60.5 42.7 33.5 87.6 94.0 34.6 19.8 21.8 40.4 58.2 

RESCAL¹ 89.0 60.3 84.2 90.4 92.8 35.4 18.9 23.5 40.9 58.7 

DistMult² 82.2 53.2 72.8 91.4 93.6 65.4 24.2 54.6 73.3 82.4 

HolE¹ 93.8 61.6 93.0 94.5 94.9 52.4 23.2 40.2 61.3 73.9 

ComplEx² 94.1 58.7 93.6 94.5 94.7 69.2 24.2 59.9 75.9 84.0 

ANALOGY² 94.2 65.7 93.9 94.4 94.7 72.5 25.3 64.6 78.5 85.4 

MLP¹ 71.2 52.8 62.6 77.5 86.3 28.8 15.5 17.3 31.7 50.1 

R-GCN³ 81.4 --- 69.7 92.9 96.4 69.6 --- 60.1 76.0 84.2 

ConvE³ 94.2 --- 93.5 94.7 95.5 74.5 --- 67.0 80.1 87.3 
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Training under open world assumption  

 Open world assumption (OWA): Missing triples are considered 
as unobserved data rather as negative examples 

 Training data: positive triple set 𝒯+, negative triple set 𝒯− 

 Optimization problem 
• Logistic loss 

 

 

• Cross-entropy loss 

 

 

• Pairwise ranking loss 



Generating negative training examples  

 Replacing 𝑠/𝑜 with a random entity sampled uniformly from ℰ 
 

 

 

(Cristiano Ronaldo, bornIn, Funchal)  (Sergio Ramos, bornIn, Funchal) 

                                                                (Cristiano Ronaldo, bornIn, Camas) 

 Replacing 𝑟 with a random relation sampled uniformly from ℛ 
 

 

 

(Cristiano Ronaldo, bornIn, Funchal)  (Cristiano Ronaldo, playsFor, Funchal) 



Generating negative training examples (cont.)  

 Defect of uniformly sampling: False-negative examples 
(Cristiano Ronaldo, gender, Male)  (Sergio Ramos, gender, Male) 

 Solution: Giving more chance to replace 𝑠 for one-to-many 
relations, and 𝑜 for many-to-one relations (Wang et al., 2014) 
• Probability of replacing 𝑠:  𝑜𝑝𝑠 𝑜𝑜𝑜 + 𝑠𝑠𝑠⁄  

• Probability of replacing 𝑜:  𝑠𝑠𝑠 𝑜𝑜𝑜 + 𝑠𝑠𝑠⁄  

• 𝑜𝑜𝑜:  the average number of object entities per subject  

• 𝑠𝑠𝑠:  the average number of subject entities per object 

(Cristiano Ronaldo, gender, Male)  (  ?  , gender, Male)  p=2% 

                                                           (Cristiano Ronaldo, gender,  ?  )  p=98% 



Generating negative training examples (cont.)  

 Defect of uniformly sampling: Too easy negative examples 
(Cristiano Ronaldo, gender, Male)  (Cristiano Ronaldo, gender, Funchal) 

 Solution I: Corrupting a position using entities compatible 
with the position (Krompaß et al., 2015) 
(Cristiano Ronaldo, gender, Male)  (Cristiano Ronaldo, gender, Female) 

                                                           (Cristiano Ronaldo, gender, Funchal) 

 Solution II: Adversarial learning (Cai and Wang, 2018) 

√ 
× 

Generator 
DistMult/ComplEx 

Discriminator 
TransE/TransD 



Generating negative training examples (cont.)  

 Negative examples generated by uniformly sampling and 
adversarial learning (Cai and Wang, 2018)  



Training under closed world assumption  

 Closed world assumption (CWA): All missing triples are taken 
as negative examples 

 Training data: All possible triples ℰ × ℛ × ℰ 

 Optimization problem:  
• Squared loss 

tensor factorization 



RESCAL as tensor factorization 

 RESCAL as factorization of tensor 𝐘 
 

 

 

 

 

 

• Loss in matrix form 
 

 

• Loss in element-wise form 

bilinear scoring function 



Other tensor factorization models 

 The CP tensor decomposition 

 

 

 

 

 

 

 
 

• 𝐞𝑖
𝑠 ∈ ℝ𝑑: embedding of the i-th entity when it appears as a subject 

• 𝐞𝑗
𝑜 ∈ ℝ𝑑: embedding of the j-th entity when it appears as an object 

• 𝐫𝑘 ∈ ℝ𝑑: embedding of the k-th relation 

≈ 



Other tensor factorization models (cont.) 

 The TUCKER tensor decomposition 

 

 

 

 

 

 

 
 

• 𝐞𝑖
𝑠 ∈ ℝ𝑑1 : embedding of the i-th entity when it appears as a subject 

• 𝐞𝑗
𝑜 ∈ ℝ𝑑2 : embedding of the j-th entity when it appears as an object 

• 𝐫𝑘 ∈ ℝ𝑑3: embedding of the k-th relation; 𝐆 ∈ ℝ𝑑1×𝑑2×𝑑3: core tensor  

≈ 



Defects of closed world assumption 

 Unfit for incomplete knowledge graphs (common in real life), 
usually performing worse than OWA¹ 

 

 

 

 

 

 

 Introducing too many negative examples, which may cause 
scalability issues during model training 

52.8 

92.8 
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¹Results taken from:  Bordes et al. (2013). Translating embeddings for modeling multi-relational data. NIPS’13. 
                                  Nickel et al. (2016). Holographic embeddings of knowledge graphs. AAAI’16. 



Review 

 Problem 
• To learn distributed representations of entities and relations from 

subject-relation-object triples 

 Approaches 
• TransE and its variations 

• RESCAL and its variations 

• Deep neural network architectures 

 Model training 
• Training under open world assumption 

• Training under closed world assumption (tensor factorization) 

 



References 
[Bordes et al., 2014] Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2014). A semantic matching 

energy function for learning with multi-relational data. MACH LEARN. 

[Bordes et al., 2013] Bordes, A., Usunier, N., Garc´ıa-Durán, A., Weston, J., and Yakhnenko, O. (2013). 
Translating embeddings for modeling multi-relational data. In NIPS’13. 

[Cai and Wang, 2018] Cai, L. and Wang, W. Y. (2018). KBGAN: Adversarial learning for knowledge graph 
embeddings. In NAACL’18. 

[Dettmers et al., 2018] Dettmers, T., Pasquale, M., Pontus, S., and Riedel, S. (2018). Convolutional 2D 
knowledge graph embeddings. In AAAI’18. 

[Dong et al., 2014] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, 
S., and Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. 
In SIGKDD’14. 

[Fan et al., 2014] Fan, M., Zhou, Q., Chang, E., and Zheng, T. F. (2014). Transition-based knowledge 
graph embedding with relational mapping properties. In PACLIC’14. 

[Feng et al., 2016] Feng, J., Zhou, M., Hao, Y., Huang, M., and Zhu, X. (2016). Knowledge graph 
embedding by flexible translation. In KR’16. 

[Hayashi and Shimbo, 2017] Hayashi, K. and Shimbo, M. (2017). On the equivalence of holographic and 
complex embeddings for link prediction. In ACL’17. 

[He et al., 2015] He, S., Liu, K., Ji, G., and Zhao, J. (2015). Learning to represent knowledge graphs with 
Gaussian embedding. In CIKM’15. 



References 
[Krompaß et al., 2015] Krompaß, D., Baier, S., and Tresp, V. (2015). Type-constrained representation 

learning in knowledge graphs. In ISWC’15. 

[Lin et al., 2015] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015). Learning entity and relation 
embeddings for knowledge graph completion. In AAAI’15. 

[Liu et al., 2017] Liu, H., Wu, Y., and Yang, Y. (2017). Analogical inference for multi-relational 
embeddings. In ICML’17. 

[Liu et al., 2016] Liu, Q., Jiang, H., Evdokimov, A., Ling, Z.-H., Zhu, X., Wei, S., and Hu, Y. (2016). 
Probabilistic reasoning via deep learning: Neural association models. arXiv. 

[Nguyen et al., 2018] Nguyen, D. Q., Nguyen, T. D., Nguyen, D. Q., and Phung, D. (2018). A novel 
embedding model for knowledge base completion based on convolutional neural network. In 
NAACL’18. 

[Nickel et al., 2016] Nickel, M., Rosasco, L., and Poggio, T. (2016). Holographic embeddings of 
knowledge graphs. In AAAI’16. 

[Nickel et al., 2011] Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective 
learning on multi-relational data. In ICML’11. 

[Schlichtkrull et al., 2018] Schlichtkrull, M., Kipf, T., Bloem, P., Berg, R. v. d., Titov, I., and Welling, M. 
(2018). Modeling relational data with graph convolutional networks. In ESWC’18. 

[Socher et al., 2013] Socher, R., Chen, D., Manning, C., and Ng, A. (2013). Reasoning with neural tensor 
networks for knowledge base completion. In NIPS’13. 



References 
[Trouillon et al., 2016] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and Bouchard, G. (2016). Complex 

embeddings for simple link prediction. In ICML’16. 

[Wang et al., 2017] Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding: A 
survey of approaches and applications. IEEE TKDE. 

[Wang et al., 2014] Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge graph embedding by 
translating on hyperplanes. In AAAI’14. 

[Xiao et al., 2016a] Xiao, H., Huang, M., and Zhu, X. (2016a). From one point to a manifold: Knowledge 
graph embedding for precise link prediction. In IJCAI’16. 

[Xiao et al., 2016b] Xiao, H., Huang, M., and Zhu, X. (2016b). TransG: A generative model for knowledge 
graph embedding. In ACL’16. 

[Yang et al., 2015] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2015). Embedding entities and 
relations for learning and inference in knowledge bases. In ICLR’15. 


	Part I: Models based on RDF triples
	Part I: Models based on RDF triples
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	Part I: Models based on RDF triples
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	Part I: Models based on RDF triples
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	Part I: Models based on RDF triples
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	Part I: Models based on RDF triples
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52

