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Problem overview

O Given
- A knowledge graph stored as a set of subject-relation-object triples
Tt ={(s,7,0)}, where s, 0 € € are entities and r € R is a relation

- No entity/relation features or extra information is used
O Aim
- To learn distributed representations of entities and relations which can
preserve the inherent structure of the original graph

O Procedure
- Define an encoder (a mapping from entities/relations to embeddings)

- Define a triple scoring function (a measure of validity of triples in the
embedding space)

- Optimize the encoder parameters (entity/relation embeddings)



Learning distributed representations

O Encoder maps entities and relations to their embeddings

(what to be learned)

- Entities are represented as points in the embedding space, i.e., vectors

- Relations are operations between entities, usually represented as vectors,

but sometimes as matrices or tensors

Encoder = Embedding-lookup

Encoding(e) = e =

Encoding(r) =r =

vector embedding for
the specific entity

T/

entity embedding matrix

vector embedding for
the specific relation
Z

$iy/

relation embedding matrix | .

X

0

dimension indicating
the specific entity

dimension indicating
the specific relation



Learning distributed representations (cont.)

O Triple scoring function specifies how the validity of a triple is
measured by its entity and relation embeddings
TranskE and its variations
RESCAL and its variations

Deep neural network architectures

O Optimize entity and relation embeddings by maximizing total
validity of triples observed in the graph
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TransE (Bordes et al., 2013)

O Translation assumption: Relations as translations operating on
entity embeddings, i.e,, s+ r = 0 when (s,7,0) holds
« China — Beijing = Italy — Rome = capitalOf
- Beijing + capitalOf = China
« Rome + capitalOf = Italy

A

Being - Capiteros Entity embedding: s,o € R?

Relation embedding: r € R?

Triple scoring function:

f(s,r,0) = —|ls+r— D”fu’ﬁz
| - les /¢, is the £1 or f3 norm




Deficiencies in TransE

O Ineffective in dealing with reflexive/many-to-one/one-to-many
relations

Reflexive relations: (s,7,0) € T, (o,7,5) € T+

s+r=o0,0+r=s = r=0,s=o0

(Cristiano Ronaldo, teammates, Sergio Ramos) teammates = 0

(Sergio Ramos, teammates, Cristiano Ronaldo) Cristiano Ronaldo = Sergio Ramos
Many-to-one relations: Vi € {1,--- ?1} (sj,r,0) €TT
Vie{l,---,n},si+r=o0 = s =---=s8,

(Camas, locatedIn, Spain)

(Real Madrid, locatedIn, Spain) Camas = Real Madrid = Barcelona
(Barcelona, locatedIn, Spain)

One-to-many relations: Vj € {1,--- ,m}, (s,r,0;) € TT
Vie{l,---,m},s+r=0; = o01=---=o0p



Improving TransE

O Introducing relation-specific entity embeddings

- TransH (Wang et al., 2014) projects entities into relation-specific

hyperplanes

- TransR (Lin et al., 2015) projects entities into relation-specific spaces

TransH

Entity and Relation Space

Projection: s| =s — WISWT
O] —0— w,rT OW -
Translation: s +r=~o

TransR
o _ A
B MI‘ B R _SL
oOw
\_\‘ r
T Mr - - oL
>
Entity Space Relation Space of »

Projection: s; = M,s

Translation:

o, = M,o
S| Tr=~=oj



Improving TransE (cont.)

O Relaxing translation assumptions+r = o

- TransM (Fan et al., 2014) assigns lower weights to one-to-many/many-
to-one/many-to-many relations so that o can lie far apart from s + rin
these relations

f(s,r,0) = —0r|[s +1 — ol /e,

- TransF (Feng et al., 2016) only requires o to lie in the same direction with
s + r, and s in the same direction witho —r

f(s,r,0)=(s+r) o+ (0o—1r)'s

- ManifoldE (Xiao et al., 2016a) allows o to lie approximately on a manifold,
l.e., a hyper-sphere centered at s + r with radius 6,

f(s,r,0) = =(||ls +r —ol* = 67)



Gaussian embeddings

O To model uncertainties of entities and relations

Uncertainties of entities

bornin
/ Funchal
nationality
/ Portugal
hasParent o ) hasChild o
/ Jose Dinis Aveiro ﬁ Cristiano Ronaldo
‘ laysFor
/ Pay Real Madrid
_ teammates )
 / Sergio Ramos

Cristiano Ronaldo Jose Dinis Aveiro higher uncertainty

Uncertainties of relations

hasParent o ) playsFor ) nationality
@ﬁmse Dinis Aveiro O Real Madrid S Portugal

higher uncertainty




Gaussian embeddings (cont.)
O KG2E (He et al,, 2015) represents entities/relations as random
vectors drawn from multivariate Gaussian distributions
Entity/relation embeddings

s~ N (g, Xs) Moy Ly, by € R? : mean vectors
o~ N(p,, Xo5) Y, X, 2, € R¥*? . covariance matrices
r~N(w,,X) A larger covariance matrix (determinant or trace)

indicates a higher level of uncertainty

Modeling assumption

str~o =>r~o—s = N(p,, X)) =N(p, —p,, 2+ Xs)

Triple scoring function
> Kullback-Leibler divergence

> Probability inner product



Gaussian embeddings (cont.)

O Covariance matrices and uncertainties of Freebase relations
learned by KG2E (He et al., 2015)

Relaion #Triplet | #Head | #Tail | Type|| (log)det | trace

nationality 4198 3755 100 m-1 -4.77 67.90
place_lived 3740 2441 784 m-n -23.02 53.24
profession 11636 4145 152 m-n -57.45 23.10

8 gender 3721 3721 2 m-1 -59.53 21.35
-E place_of_birth 2468 2468 685 m-1 -63.42 19.41
'S ethnicity 2030 1610 78 m-1 -69.95 15.00
v major 260 217 60 m-1 -69.59 14.62
8 sibling 131 111 113 1-1 -712.98 14.29
:=; religion 1086 063 45 m-1 -75.07 12.98
spouse 427 395 385 1-1 17177 12.24

children 77 69 71 1-1 -716.94 12.14

parents 83 74 76 1-1 -77.20 12.03




Multiple relation semantics

O A relation may have multiple meanings revealed by entity
pairs associated with the corresponding triples

lE Common
H Comedy
O Crime
T SEEETEE | I
H Actor-Award '
B Artist-Award
B Organization :
0 American | -
B European
E others
EComposition A 2 %Q;
HLocation
(cHasPart (d)Film Country

e S+Hr~o = r~o-—s

* Visualization of TransE embeddings
o — s for different relation r, where
(s,r,0) €T,

e Different clusters indicate different
relation semantics, e.g., composition
and location for the hasPart relation

Material based on: Xiao et al. (2016). TransG : A generative model for knowledge graph embedding. ACL'16.



Multiple relation semantics (cont.)

O TransG (Xiao et al., 2016b) models multiple relation semantics
by mixtures of Gaussians

Entity embeddings: Random vectors drawn from Gaussian distributions

s~ N(pg,0.1), 0~ N(py, 05T)

Relation embeddings: Mixtures of Gaussians
i ' 2 2
r=> mpy, My~ N (, — pe, (07 +02)T)
i

Triple scoring function: A mixture of translational distances introduced
by different semantics of a relation

| _ TR L
f(S, ?‘,D) _ Z ']'T:', exp ( ”p’s o PLDH )
i

2 2
crs+ao




Multiple relation semantics (cont.)

O Different semantics of Freebase/WordNet relations learned by
TransG (Xiao et al., 2016b)

Relation Cluster Triples (Head, Tail)
PartOf Location (Capital of Utah, Beehive State), (Hindustan, Bharat) ...
Composition || (Monitor, Television), (Bush, Adult Body), (Cell Organ, Cell)...
Relicion Catholicism (Cimabue, Catholicism), (St.Catald, Catholicism) ...
= Others (Michal Czajkowsk, Islam), (Honinbo Sansa, Buddhism) ...
DomainRegion Abstract (Computer Science, Security System), (Computer Science, PL)..
Specific (Computer Science, Router), (Computer Science, Disk File) ...
Scientist (Michael Woodruf, Surgeon), (El Lissitzky, Architect)...
Profession Businessman (Enoch Pratt, Entrepreneur), (Charles Tennant, Magnate)...
Writer (Vlad. Gardin, Screen Writer), (John Huston, Screen Writer) ...




Summary of the Transk family

O Summary of entity/relation embedding and scoring functions

Method | Ent. embedding Rel. embedding Scoring function f(s, r, a) Constraints /Regularization
TransE | s,0c RY reR? —|ls +r —olle eq lsll = 1. Jlo|| =1
] sl <1,||lo| <1
TransH s, 0 € R? r,w, € R4 —|l(s — W,TEWr:I +r—(o— W:—D‘Wr}”z | "__ | ”,_
Iw, rl/llrll < e |w.|| =1
. gl <1,||lo] <1,]|r|]] <1
TransR s, 0 B9 rc BF M, € k>4 —||M,s +r — M,o|* b=l = L fof) = Ll =
IMs|| < 1, |IMof =1
TransM | s,0 € RY r € R4 —br|ls +r — ol e Isll =1, |lo|| =1
TransF | s.oe® re R (s+1) 0+ (0—r)"s Isll < 1. ol < 1, |r|| <
ManifoldE| 5,0 € R re R4 ~(Is+r—o|* —67)° sl < L. Jlofl < 1. |Ir|| <1
r 3 e —1 Ten—1 det(E,)
s N(p, Xy —tr(E, (BB —p E] p-lnggeavyy el S Llel = el £1
KG2ZE Dm'ﬂ\'"':#a'zn::' oo -"\'"'[.F-'-,-: 2.) _PTE_]F’ — In(det(X)) Cminl € Xy < €masl
B, €RA p, € R4 B e RI¥d p=p,+p, —H, Cminl € By € emazl
E..E, crixd E=E.+E.+E, Cminl € B, € €mazl
s N(p_.oo1) _ N 2. o
. - “ ""’:N"ﬂ"' P-D—j..!-*,{ﬂ'x*'ﬂ'g:ll 5T —Hg
TransG | o~ A (.0 21) (ot (0,40, )) ¥, miexp (- Mot pol® lsll < Ll < 1. [l <1
L r=X.mipler e
By H, ER

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.



Summary of the Transk family (cont.)

O Comparison in space and time complexity

Method Space Time

TransE O(nd + md) O(d)

TransH O(nd + md) O(d)

TransR O(nd + mdk) O(dk) P TransR introduces for each relation
TransM O(nd + md) O(d) r a projection matrix M,. € R¥*4
TransF O(nd + md) O(d)

ManifoldE O(nd + md) O(d)

KG2E O(nd + md) O(d)

TransG O(nd + mdc) O(de) P TransG models each relation as a

mixture of ¢ Gaussian distributions

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.
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RESCAL (Nickel et al., 2011)

O Bilinear matching: Capturing pairwise interactions between all
dimensions of subject and object entity embeddings

Entity/relation embeddings
s,o c RY, M, c R%*d

Triple scoring function

f(s,7,0) =s' ' M,0 = EEEEEEEE x X

« Space complexity: O(d?) per relation

« Time complexity: 0(d?)




DistMult (Yang et al., 2015)

O Simplify RESCAL by restricting M,. to diagonal matrices

Entity/relation embeddings
S,0 € Rd, r € R?

Triple scoring function

f(s,7,0) = s'diag(r)o = mEEEEEEE x X

f(s,1,0)
e Space complexity: 0(d)

r e Time complexity: 0(d)

« Suitable only for symmetric relations

f(s,r,0) = f(o,1,5)




Holographic embeddings (HOIE) (Nickel et al., 2016)

O Combine expressiveness of RESCAL with simplicity of DistMult

Entity/relation embeddings
S,0 € Rd, r € R?
Triple scoring function .,
—1

f(s,r,0)=r'(sx0), [sxo0]; = Z SkO(k+i) modd
k=0

(circular correlation: sS*x0 # 0*s)

e Space complexity: 0(d)
e Time complexity: O(dlogd)
» Suitable for asymmetric relations

f(s,r,0) # f(o,r1,5)




Complex embeddings (ComplEX) (trouilion et al., 2016)

O Extend DistMult by introducing complex-valued embeddings
so as to better model asymmetric relations

Entity/relation embeddings
S,0 € Cd, r € C4

Triple scoring function r conjugate of o
f(s,r,0) = Re(s' diag(r)o)

[ real part of a complex value

f(s,1,0)
e Space complexity: 0(d)

r * Time complexity: O(d)
» Suitable for asymmetric relations

f(s,r,0) # f(o,r1,5)




Analogical inference

O Analogical properties of entities and relations

surrounded_by
nucleus > electrons

surrounded_by
sumn » planets charge

nucleus is to electrons as sun is to planets
electrons is to charge as planets is to mass = (nucleus, attract, charge)

nucleus is to charge as sun is to mass

Material based on: Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML'17.



ANALOGY (Liuetal, 2017)

O Modeling analogical properties

Analogy: aistobascistod

‘ d ! - >b !
T T ’.'" ’F’ I
a—=b c—=d a—=c, b—=d \&C T\d
4

Commutativity: ror’ =7’ or (compositional equivalence)

O The ANALOGY model
Bilinear scoring function: f(s,7,0) =s' M,o
Commutativity: M, M, = M, M,., Vr,r' € R
Normality: M,M =M'M,, ¥reR



Summary of the RESCAL family

O Relationships between different methods

commutativity
normality

diagonalization  subsumed by

subsumed by subsumed by

complex-valued subsumed by

embeddings

Material based on: Hayashi and Masashi (2017). On the equivalence of holographic and complex embeddings for link prediction. ACL'17.
Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML'17.



Summary of the RESCAL family (cont))

O Summary of entity/relation embedding and scoring functions

Method Ent. embedding Rel. embedding Scoring function f(s,r,0) Constraints/Regularization
RESCAL s,0 € R? M, € R4*4 s' M,o Is|| € 1, lo|| € 1,||M,||r <1
DistMult s,o € R4 r € R4 s " diag(r)o Is]| = 1, |le]| = 1.|Ir|| < 1
HolE s,0 € R? r € R? r' (s o) sl < 1, |lo|| < 1,||x|| <1
ComplEx s,0 € C* reC? Re(sTdiag(rjﬁ) Isl]| < 1,|le|| < 1,|r|| £1

sl < 1, loll € 1, M|z < 1
ANALOGY s,o0 € R4 M, € R4*4 s M,o M, M, = M_, M,

M, M = MM,

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.



Summary of the RESCAL family (cont))

O Comparison in space and time complexity

Method Space Time

5 5 RESCAL models each relation r as a

RESCAL | O(nd+md?) O(d?) o | i

projection matrix M, € R

DistMult O(nd+md)  O(d)

Circular correlation is calculated via

HolE O(nd+md)  O(dlogd) P . ,
discrete Fourier transform whose

ComplEx O(nd+md)  O(d) time complexity is O(d logd)

ANALOGY | O(nd+md)  O(d) 4 Projection matrices can be block-

diagonalized into a set of almost-
diagonal matrices, each has 0(d)
free parameters

Material based on: Wang et al. (2017). Knowledge graph embedding : A survey of approaches and applications. IEEE TKDE.
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Semantic matching energy (SME) (Bordes et al, 2014)

O Combine relation with subject to get g,,, with object to get g,
and match g, and g, by dot product

* f(s,7,0) Triple scoring function:
u f(s.7,0) = gu(s.1) Tgu o, 1)
SME (linear):
Q00 OO gu(s,r) = Mls + M3r + b,
gv(o,r) = Mjo + M?Zr + b,
M;, M7, b, M; M b, SME (bilinear):

gu(s,r) = (M5s) © (M2r) + b,
@000 G000 @000  v(o.r) = (Mo)© (M2r) + b,

S r 0 © is the Hadamard product

# parameters: O (nd + md)



Multi-layer perceptron (MLP) (pong et al, 2014)

O Concatenate subject, relation, object as input, and employ a
standard multi-layer perceptron

® S (s,7,0)
Triple scoring function:
w f(s,7,0) = w ' tanh (M]s; r;0])
T 1 2 3
=w tanh(M's + M“r + M"o)
tanh @OO00 y
I M = [M*', M? M?]: first layer weights
M1 M2 M3 w: second layer weights

@000 OO0 00O

S r 0

# parameters: O (nd + md)



Neural tensor network (NTN) (socher et al., 2013)

O An expressive neural network that models relations as tensors
(along with matrices and vectors)

Confidence for Triple Linear Slices of Standard Bias
Layer Tensor Layer Layer
'(J‘F __________ "l‘\ ™
oo [ Q| g
N | .:-,
® tanh|____ 1888 81 pgosmel8 4
-2 o
|@8® [000 | E
s 8
N 7 J

f(s,r,0) =r' tanh(s' M,.o + M, [E] + b,)

(a]8]8)

s"M, o]; =s Mo

( Bengal tiger, has part, tail)

# parameters: O(nd + md?k)



Neural association model (NAM) (Liu et al., 2016)

O Model subject-relation-object triples with a deep architecture

object entity vector object entity vector

# parameters:
! O(nd + md)

Association at here o Associatjon at here
out: I['I)
In: a®
out: z
In: 2™
out: I[]
In: a™
relation vector subject entity vector [ subject entity vector
z(9) = [s; r]
For{=1,2,---,L Forf=1,2, L
a® — MO z(=1) | H® alt) =M ) + B
z(Y) = ReLU(a®) z(") RELU(a ))

f(s,r,0) =o'zL) f(s,r,0) =o' (z1) + BUEADr)



Relational graph convolutional network (R-GCN) schiichtkrui et al, 2018)

O Message passing on knowledge graphs with relation-specific
transformations (type + direction)

rel_1 (in)

rel_1 (out)

I | |

rel_N (in)

~

— rel_Njout)

— selfloop /

.
)

I ||

||

B

— self-loop —.

Ce

hg*‘-’“?':g(z > Wi + W 1?")

reR jENT
hgﬂ: hidden state of the i-th entity in the /-th layer
N : neighbor indices of the i-th entity under relation r
WY transformation w.r.t. relation r in the /-th layer

’WT,'::}E]: transformation w.r.t. self-loop in the /-th layer

Parameter sharing & enforcing sparsil}r

B
Wi = 2 a0vi Wi = & q

# parameters: O(ndL + mdl)



Convolutional 2D embeddings (ConvE) (pettmers et al, 2018)

O Reshape subject/relation vectors into matrices, and apply 2D
convolution across concatenated input

Projection to

Embeddings “Image" Feature maps embedding Logits Predictions
dimension
O 0.9
O 0.2
@] 0.1
Fully connected o Matrix CQ  Logistic 0.6
s [ Coneet Cnnuulve pro]ection o Mmultiplication 8 sigmoid g-%
r 11 8 a8 o9
entity matrix O ﬂ-l
O 0.4
O 0.4
Embedding Feature map Hidden layer O 0.4
dropout (0.2) dropout (0.2) dropout (0.3)

s:7] g([sir] xw)

f(s,r,0) = 0" g (Wvec (g([5; 7] #w))), g = ReLU

# parameters: O(nd + md")



ConvKB (Nguyen et al., 2018)

O Concatenate subject/relation/object vectors into d X 3 matrices,
and conduct convolution with multiple 1 x 3 filters

HE
s ro f(s,r,0) = w ! vec (g([s,r,0] *Q))

Q= {wi,wo, w3}, g=RelLU

s, 1, o] \ w3 w=1, g(x)=|z|or x>
ConvKB = TransE

# parameters: O(nd + md)




Comparison among different methods

O Link prediction performance (%) on WN18 and FB15k

WN18 FB15k

MRR MRR Hits@l Hits@3 Hits@1l0 MRR MRR Hits@1l Hits@3 Hits@10
(filt) (raw)  (filt) (filt.) (filt.) (filt) (raw)  (filt) (filt.) (filt.)

TransE* 495 351 11.3 88.8 94.3 46.3 222 29.7 57.8 74.9
TransR* 60.5 42.7 33.5 87.6 94.0 346 1938 2138 40.4 58.2

RESCAL* 89.0 60.3 84.2 90.4 92.8 354 189 23.5 40.9 58.7
DistMult®> 822 53.2 72.8 914 93.6 654 242 54.6 73.3 82.4
HolE* 938 616 93.0 94.5 94.9 524 232 40.2 61.3 73.9
ComplEx* 941 587 93.6 94.5 94.7 69.2 242 59.9 75.9 84.0
ANALOGY? 942 657 93.9 944 94.7 725 253 64.6 78.5 854

MLP? 71.2 528 62.6 77.5 86.3 288 155 17.3 31.7 50.1
R-GCN? 814  --- 69.7 929 %.4 BELS o 60.1 76.0 84.2
ConvE? 942  --- 93.5 94.7 95.5 WS e 67.0 80.1 87.3

'Results taken from: Nickel et al. (2016). Holographic embeddings of knowledge graphs. AAAI'16.
?Results taken from: Liu et al. (2017). Analogical inference for multi-relational embeddings. ICML'17.
*Results taken from: Dettmers et al. (2018). Convolutional 2D knowledge graph embeddings. AAAI'18.
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Training under open world assumption

O Open world assumption (OWA): Missing triples are considered
as unobserved data rather as negative examples

O Training data: positive triple set 7, negative triple set 7~

O Optimization problem

Logistic loss
1, 7T=(s,r,0)eTT

min ) log (1 +exp(—y, - £(7))) yT:{__I_]_:

TeT TUT —
Cross-entropy loss I I

: 1, 7eTT
min Y [~y log(e(£(r))) — (1 - ;) -log(1 — o(f(1)))] yTz{Ol I

Pairwise ranking loss

Tt =(s,1,0 +
min 3 max Oy - )+ £67) { -SR0S T

s',r', o)y e T~
TteT+r—eT-



Generating negative training examples

O Replacing s/o with a random entity sampled uniformly from &
T ={(s',r,0)|ss €ENS' #5N(s,7,0) €T}
J{(s,m,0 ) € END # oA (5,7,0) €T}
(Cristiano Ronaldo, bornln, Funchal) = (Sergio Ramos, bornln, Funchal)

(Cristiano Ronaldo, bornln, Camas)

O Replacing r with a random relation sampled uniformly from R
T ={(s",r,0)|s €EANS #sN(s,7,0) €T}
U{(s,r,0)o €END # 0N (s,7,0) €T}
U{(s,7",0)|r" € RAT #rA(s,m,0) €T}

(Cristiano Ronaldo, bornln, Funchal) = (Cristiano Ronaldo, playsFor, Funchal)



Generating negative training examples (cont.)

O Defect of uniformly sampling: False-negative examples

(Cristiano Ronaldo, gender, Male) = (Sergio Ramos, gender, Male)

O Solution: Giving more chance to replace s for one-to-many
relations, and o for many-to-one relations (Wang et al., 2014)
Probability of replacing s: ops/(ops + spo)
Probability of replacing o: spo/(ops + spo)
ops: the average number of object entities per subject
spo: the average number of subject entities per object
(Cristiano Ronaldo, gender, Male) 2 ( ? , gender, Male) p=2%
(Cristiano Ronaldo, gender, ? ) p=98%



Generating negative training examples (cont.)

O Defect of uniformly sampling: Too easy negative examples

(Cristiano Ronaldo, gender, Male) = (Cristiano Ronaldo, gender, Funchal)

O Solution I: Corrupting a position using entities compatible
with the position (KrompaB et al., 2015)

(Cristiano Ronaldo, gender, Male) = (Cristiano Ronaldo, gender, Female) \/
(Cristiano Ronaldo, gender, Funchal) X

O Solution II: Adversarial learning (Cai and Wang, 2018)

LocatediniNewOrleans, 7) U :
{ {‘_ J {\rﬂfﬂfﬁfﬂm@wg"{f”ﬂiLﬁﬂiﬂﬂ"%\t ; miarginal 14:_:55
¥ :

> del0 -

Flovida —®| — peil

Ching ——» =il 3

BarackObama —| (| p=0.02 Sempling ) Locatedin(NewOrleans, Fiorida) D -
StarTrek —m) — 003 1 \
Google —» > p=0.05 &Kdﬁ?.ﬂ _e
Generator % ' Discriminator

DistMult/ComplEx e e " TransE/TransD



Generating negative training examples (cont.)

O Negative examples generated by uniformly sampling and

adversarial learning (Cai and Wang, 2018)

Positive fact

Uniform random sample

Trained generator

(condensation NN _2,
derivationally_related_form,
distill_VB_4)

family_arcidae_NN_I
repast_NN_I

beater NN_2
coverall_ NN_I

cash_advance_NN_1

revivification _NN_I
mouthpiece_ZNN_3
liquid_body_substance_NN_I
stiffen_'VB_2

hot_up_VB_I

(colorado_river_NN_2,

lunar_calendar_NN_1

tdaho NN _I

social_gathering NN _1)

giant_cane_NN_I
streptomyces_NN_I
tranquillize_VB_1

instance_hypernym, umbellularia_californica NN_1 | sayan_mountains_NN_I

river NN_1) tonality_NN_I lower_saxony_NN_I
creepy-crawly_NN_1 order_ciconiiformes_NN_I
moor_VB_3 jab_NN_3

(meeting_NN_2, cellular_JJ_1 attach_VB_I

hypernym, commercial_activity_NN_I bond_NN_6

heavy_spar NN_I
satellite_NN_I
peep_VB_3




Training under closed world assumption

O Closed world assumption (CWA): All missing triples are taken
as negative examples

O Training data: All possible triples € X R x &

O Optimization problem:

Squared loss

m ce\ation® .

min Z (yST‘D —_ f(S? r, U) )2 _|_ ~ j-th entity
(S?TEG)ESXRXE - Z ‘ k-th relation
5 ®
Ysro — { L (Sj " O).E T ) i-th entity
0. otherwise 1

N
174 e[] [12(1 és /
N

tensor factorization



RESCAL as tensor factorization

O RESCAL as factorization of tensor Y

7-th entity
: - -th
-th it
enﬁtity QQ entty o
Ny

k-th °| x

relation )
ot
k-th
\ / re l ation

Loss in matrix form

min Y _[[Y5M —EMRE' |7
k

Loss in element-wise form

. T 2
min Z (yijk —e; Mkej)
s [ bilinear scoring function



Other tensor factorization models

O The CP tensor decomposition

Jj-th entity k-th
relation
" N
ti i-th
entity entity
k-th o — \
relation z

S edity
\/ ty

d
A (s) . (0)
Yijk =~ Zeif "Tke €
£=1

egs) € R%: embedding of the i-th entity when it appears as a subject

e]@ € R%: embedding of the j-th entity when it appears as an object
r, € R%: embedding of the k-th relation



Other tensor factorization models (cont.)

O The TUCKER tensor decomposition

Jj-th entity k-th
relation
i-th S ;
entity *~| i-th RN @
entity
1 k.'th o | .\\
relation z

ity
\/ \ entity

1 2 3
Yijk =~ 7 T T Gabe * ke EE}E)

a=1 b=1c=1

(S) € R%: embedding of the i-th entity when it appears as a subject

(0) € R%: embedding of the j-th entity when it appears as an object

r, € R%: embedding of the k-th relation; G € R%1*42%43; core tensor



Defects of closed world assumption

O Unfit for incomplete knowledge graphs (common in real life),
usually performing worse than OWA*

Hits@10 on WN18 (%) Hits@10 on FB15k (%)
100 ~ 70 A
60 -
80
50 H
60 - 40 -
40 - 30 -
20
20 10
0 T 0 T
RESCAL-CWA RESCAL-OWA RESCAL-CWA RESCAL-OWA

O Introducing too many negative examples, which may cause
scalability issues during model training

'Results taken from: Bordes et al. (2013). Translating embeddings for modeling multi-relational data. NIPS'13.
Nickel et al. (2016). Holographic embeddings of knowledge graphs. AAAI'16.



Review

O Problem

- To learn distributed representations of entities and relations from
subject-relation-object triples

O Approaches
« TransE and its variations

« RESCAL and its variations

- Deep neural network architectures

O Model training
- Training under open world assumption

- Training under closed world assumption (tensor factorization)
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