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Entity types

O Semantic categories to which entities belong

author

]

|

written_work ]

|

( William Shakespeare, book/author/works_written, Romeo and Juliet)

O Each entity may have multiple type labels, and the types could

also be hierarchical

(" aist ) (sward nomined) ( suthor ) (ertten_work ) (TV_subject )

( William Shakespeare, book/author/works written, Romeo and Julier)

Example from: Xie et al. (2016). Representation learning of knowledge graphs with hierarchical types. UCAI'16.



Semantically smooth embedding (Guo et al, 2015)

O Key idea

- Entities of the same type should stay close in the embedding space

O Modeling semantic smoothness

- Laplacian eigenmaps (LE): If two entities belong to the same type, they
will have their embeddings similar to each other

R1 = 1Zﬂ;:Zn:\le- _ePwl, wh = { L tupele) =type(e;)
D) e ! J i g 0. otherwise

« Locally linear embedding (LLE): An entity can be reconstructed from its
near neighbors (entities of the same type) in the embedding space

Ro = Z le; — > w?ei||*. w? = .
— 1 e;EN(es) / K 0, otherwise



Semantically smooth embedding (cont.)

O Visualization of entity vectors learned by semantically smooth
embedding (Guo et al., 2015)

® Athlete

* Politicians
Chemical

¢ City

¢ Clothing
Country

Sportsteam
Journalist
Televisionstation
Room

(c) TransE-LE. (d) TransE-LLE.



Type-embodied knowledge representation learning i etal, 2060

O Key idea

- Translation after type-specific entity projection: M,;s +r = M,,0

O Modeling multiple type labels

- Projecting an entity with a linear combination of type matrices

i ML, 1, ¢; €Cy
M 21:1[} -'t,:. QE{CE &

B U: Ci Q CT‘E

rs — =
D i1
projection matrix of type c;

O Modeling hierarchical types

- Projection matrix of a type as a composition of projection matrices of its
sub-types
addition: M, = /1M, +---+ B, M

multiplication: M,. = M1 ©®--- © M,

f

projection matrix of sub-type c{
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Textual descriptions

O Concise descriptions of entities in knowledge graphs

( William Shakespeare, book/author/works written, Romeo and Juliet )

1 1

William Shakespeare was an) Romeo and Juliet 1s a tragedy

English poet, playwright, and written by William Shakespeare
actor, ... early in his career ...

O Other general textual information such as news releases and
Wikipedia articles

Example from: Xie et al. (2016). Representation learning of knowledge graphs with entity descriptions. AAAI'16.



Initialization by word embeddings (Socher et al,, 2013)

O Key idea

- Initializing entity representations with pre-trained word embeddings

Knowledge Base Word Vector Space Reasoning about Relations
: tail
Relation: has part _’r/ﬂ Confidence for Triplet
cat tail =" ﬁ
dog leg cat leg
©dog

Relation: type of e
leg limb f

Relation: instance of

( Bengal tiger. has part. ftail)
Does a Bengal tiger have a tail?

1
vec(Bengal tiger) = 5 (Vec(Bengal) + Vec(tiger))



JOintly embedding With teXt data (Wang et al., 2014; Zhong et al., 2015)

O Key idea

- Jointly embedding relations, entities, and words into the same vector
space so that one can make predictions between entities and words

O Jointly embedding framework

min L+ L7+ L4y
- 4 ~

knowledge model  text model alignment model

- Knowledge model: Modeling triples in a knowledge graph
- Text model: Modeling co-occurring word pairs in a text corpus
- Alignment model: Aligning entity and word embedding spaces

> Wikipedia anchors, entity names, entity descriptions



Jointly embedding with text data (cont.)

O Knowledge model
exp{z(s,r,0)}

. _ : = b— 0.5 —

Pr(s|r, o) S e (25,7 0)] z(s,7,0) 5[s +r — o

Ly = — Z log Pr(s|r, 0) + log Pr(r|s,0) + log Pr(o|s, r)]
(s,r0)ET+

O Text model

exp{z(w,v)}
Pr(w|v) = z(w,v) = b—0.5||w —v|
W= ety ”
L1 =— Z log Pr(w|v)
(w,v)eC

O Alignment model (by entity descriptions)

lwle) — exp{z(e,w)}
) ey e et w)

La= —Z Z log Pr(wl|e) + log Pr(e|w)]

ecf weD,

z(e,w) = b—0.5||e — w]|



Description-Embodied Knowledge Representation Learning e etal, 20162)

O Key idea
- Entity: structure-based embedding + description-based embedding

- Description-based embedding as composition of word embeddings

O Triple scoring function

f(s,m,0) =—||sk +r —ok|| @ score for structure —based embeddings
—|ls7 +r —or| —llsk +r —or| —|[s7 +r — okl
\ J
) 4

@ score for description —based embeddings

« Sk, 0g: structure-based entity embeddings

- s, 07: description-based entity embeddings, modeled as compositions
of word embeddings



Description-Embodied Knowledge Representation Learning (cont.)

O Modeling description-based entity embeddings

Continuous bag-of-words encoder: Composition by addition, ignoring
word orders

subject + relation = object
® 2 =
® + o = =
L]
e o o o o ® o o o o
® o o o o ® o o o o

keywords of subject keywords of object



Description-Embodied Knowledge Representation Learning (cont.)

O Modeling description-based entity embeddings
- Convolutional neural network encoder: Composition by CNN, taking
word orders into account
subject + relation =  object

L ] =+ = L

.
.
2nd Pooling & nonlinear I I
2nd Convolution /PM\ /M\

Pt 1117

L] L
1st Pooling & nonlinear f ¥

S
J

* o ® . T EEEEEEERE
e @ @9 & & & & 8 @ & & & ® & & @& @ = @
a ¢ & & @ @ e @ @ @

description of subject description of object
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Relation paths

O Multi-hop relationships between entities, extremely useful for

predicting missing links

Faramnunt United
Count
F"u:tures States

Robert
Cumpan\r Official Language
7 Zemeckis B

Director

Language

Forrest

Gump | T Language of Film== == == = English

Release Region Official Language

N

Norway

Company Country Official Language
Forrest Gump ——— Paramount Pictures —— United States ——— English

Director Language
Forrest Gump —— Robert Zemeckis ——— English » Forrest Gump
Release Region Official Language

Forrest Gump ———  Norway ——— English

Example from: Lin et al. (2015). Modeling relation paths for representation learning of knowledge bases. EMNLP'15.

?

Language of Film
——— > English



Modeling relation paths

O Relation path: A sequence of relations linking two entities

r1 ra re
p=(rira,eime) & s e B Mo

O Path representation: Composition of relation representations

(0000Q) p=(r1,72, -+ ,7¢)
*

composition

B R

(©000] (0000

OE=oE "0
r 5 Ty

1

p=rjorpo---ory; (oisacomposition operation)



Path-based TransE (Lin et al, 2015)

O Key idea
Taking relation paths as translations between long distance entities
subject + path = object
+ Qoo =
" &

O Semantic composition
addition: p=r;+ro+---+ry

multiplication: p=r1 ©ra ©®--- O ry

RNN: ¢; = f(W]c;_1;15])



Path-based TransE (cont.)

O Optimization problem

Modeling relation-connected triple (s, 7, 0)

L(s,

I
4 , (s',r",0")eT —
loss of triple

Modeling path-connected triple (s, p, 0)

f(s,p,0) = —|s+p—of=—|p—(o—s)|~—|p—r

Lp,r)= Y, max(0,y+|p—r| —|p—rl)
4 (s,r",0)€T —

loss of path
Combining the two parts reliability of path p
min Z {ESIG—F—ZR S, )]
(s,r,0)eT+ T PEP(S 0)

@ loss of (s,r,0) @ loss of all paths linking s and o

ro)= S max(0,y+s+r—of - [Is'+ ' =)



Path-based TransE (cont.)

O

Link prediction performance on FB15k

. Mean Rank | Hits@10 (%)
Metric Raw Filter | Raw  Filter
RESCAL 828 683 | 284 441
SE 273 162 | 288 398
SME (linear) 274 154 | 307 408
SME (bilinear) 284 158 | 313 413
LFM 283 164 | 260  33.1
TransE 243 125 | 349  47.1
TransH 212 87| 457 644
TransR 198 77 | 482 687

TransE (Our) 205 63| 479 702 |
PTransE (ADD, 2-step) | 200 54 | 518 834
PTransE (MUL, 2-step) | 216 67 | 47.4 777
PTransE (RNN, 2-step) | 242 92 | 506 822
PTransE (ADD, 3-step) | 207 58 | 51.4  84.6

Addition composition operation performs best

s—e —0

S+r1:e1
e,+r,=o0

s+(r;+r)=o0



Compositionalizing other models Guu et al, 2015)

O TransE (composition by addition)

f(Sal?‘:G) — _”S—I_P_DH — f(Sapao) — _HS—I_(rl + "'—I_rff) _U”

O RESCAL (composition by multiplication)

f(s, 7,0 —s'M,o = f(s,p,o —s'(M,, ®---OM,,)o
1 £

O DistMult (composition by multiplication)

f(s,r,0) =s'diag(rlo = f(s,p,0)=s'diag(r1 ®---®r¢)o
g g



Advantage of compositional learning Guu et al, 2015)

O Modeling triples separatel e
I g p 1 p y tad_lincoln i parent I::
iIntroduces cascading errors - =T pare

abraham lincoln ‘

thomas lincoln

O Modeling paths compositionally reduces cascading errors

'? 2 \

0.8

0.6

0.4

tad_lincoln parents place_of birth  place_of_birth"-1 profession

tad lincoln mary iodd lincoln spr ||-__|‘|-_'I-_I AL mary todd lincoln businesspearson
abraham_lincoln maine william_jayne entreprenaur
carmalia_hinton wilmingtan ameary_j_san_souci farmear
vl o wkikr £y k&l"'ll_ll:ll':,l’ alexis | du_ pont |aw'!|r|';.-r
rebert_todd_lincoln osaka lattie_moon nventor

tad_lincoln mary_todd_lincoln syracuse_new_york maorton_dacosta film_dire-ctar
abraham_lincoln asaka arry_tucker scraanwriter
princass a :j.g'I)i_"_ll l:_l"lilll:l maorassa CLIF :I‘l J:_I_: l_|l_|i-:1 :|II '_II-_II_‘II,.{'I_;'

grand_duke_konstartin wilkinsburg milan_vukcevich gigntist

eleanor_of _aguitaine peterhol bernard_farnow baseball player



Path-RNN (Neelakantan et al., 2015)

O Modeling paths (sequences of relations) with RNN

CIIXIIT] CountryOfHeadquarters
p~r ~

///-’D
EEEEEE

/q\

Is Basedin Statelocatedin Cnunhyanatedln
Microsoft > Seattle Washington

O



Path-RNN with entity information (pas et al, 2017)

O Entity information is useful in path modeling

- Without entity information

? ?
pemmeseseseseseneieceoes airportServes e--eesccecccccceaccnn.. - pesssesesesesecccoooooon. airportServes =e--eecceccccccceaceaacn

v
locatedIn locatedIn locatedIn locatedIn
B P —_— —_

- With entity information

? ?
pemesmemeoesmeoeooooeooe airportServes -------s-eseceococaonas - pemesesmseoeesieooeoene airportServes i=----se-eccecceccacceocan

Kennedy locatedIn locatedIn Vankee locatedIn locatedIn
International Stadium
Airport



Path-RNN with entity information (cont.)

O Taking paths as sequences of entities and relations, modeled

with RNN
0000
0000 ——
b](ee)eYe)
0000
0000
d |ODOO| '[Similarity metrin:]
countryofHQ 1
(target relation)
0000 oQCQ00 0000 (O O O O] ratn vecton)
l \| T
T L D i SN ) G r ]
| |
[©000] [COCO] (©000Q] (OO0 0] [©000] [OO0O] ([COCQO] 0000]

isBasedin lecatedin locatedin {durmmy_rel}
—_—

Microsoft ——— Seattle — Washington ——— LISA
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Logic rules

O First-order Horn clauses
Vx,y: (x, capitalOf, y) = (x,locatedln, y)

The capital city of a country must be located in that country

O Having a close relationship to relation paths

Paramount | United
Pictures

Country:

‘ Robert
Zemeckis

States Vx,y, z: (x, Director, y) A (y, Language, z)
= (x, Language of Film, z)

Company Official Language

Vx,y, z: (x, Release Region, y) A (y, Official Language, z)

= (x, Language of Film, z)

Forrest
Gump

Example from: Lin et al. (2015). Modeling relation paths for representation learning of knowledge bases. EMNLP'15.



Hard rules vs. soft rules

O Hard rules
« Rules that always hold with no exception
Vx,y: (x, capitalOf, y) = (x,locatedln, y)
The capital city of a country must be located in that country

- Usually requiring extensive manual effort to create or validate

O Soft rules
- Rules with different confidence levels that can handle uncertainty
Vx,y: (x,bornln, y) = (x, nationality,y) (confidence = 0.8)

A person is very likely (but not necessarily) to have a nationality of the country
where he/she was born

- Automatically extracted via modern rule mining systems



Automatically extracted soft rules

O Soft rules mined from YAGO by AMIE+ (Galarraga et al. 2015)

Rule Precision in tlhe unknown Std. P_CA N_eu:r T-':thl
region Confidence Confidence Predictions predictions

7e <isMarriedTo> 7a e <hasChild> ?b => 7a <hasChild=> 7b 34.48% 57.57% ETET% 1865 1865
?a <isMarriedTo> 7 ?f <hasChild> 7k == 73 <hasChild= 7b 33.33% 56.11% 56.11% 1068 1966
?b <isMarriedTo> 7a => ?a <isMamiedTo> 7b 100.00% 53.01% 91.79% 5158 5158
?a <created= ?b ?a <produceds ?b == ?a <directed> 7b 3.33% 49.83% 58.68% 976 976
7a <actedIn= ?b ?a <created= ?b == ?a <directed> ?b 3.45% 38.29% 4523% 5138 6038
7a <isMarmedTo> 7¢ 7c <livesln> ?b => 7a <livesIn> 7b 75.00% 33.711% 69.88% 326 326
?a <dealsWith> ?f 7f <deals\With> ?b => 7a <dealsWith> ?b 20.00% 28.19% 28.19% 75 75
7c <dealsWith> 7b 7a <dealsWith> ?c => ?a <dealsWith> 7b 26.67% 28.19% 258.19% 0 75
7e <isMarriedTo> 7a 7e <livesin> ?b => 7a <livesin= 7b 100.00% 2281% 65.42% 299 542
?a <actedIn> ?b 7a <created> 7b => 7a <produced= ?b 18.52% 20.64% 38.98% 790 790
7a «directed> ?b == ?a <created> 7h 24.14% 18.75% 32.46% 26980 26980
?a <livesin= ?f 7f <hasCapital> ?b == 7a <livesin= 7b 16.67% 18.53% 18.53% 2851 2852
7a <livesin= ?f ?f <isLocatedIn= ?b == ?a <livesIn> 7b 89.66% 17.80% 17.80% 4225 4227
?a <hasChild> 7c 7b <hasChild> ?c == ?a <isMarriedTo= 7b TE.6T% 17.32% 40.98% 1170 1720
?a <created> ?b ?a <directed> ?b => ?a <produced=> ?b 0.00% 16.11% 37 AT% 4973 5258
?c <dealsWith> ?a ?c <dealsWith> ?b => ?a <dealsWith> 7b 42 86% 15.44% 21.78% 471 473
? i 7h 7 <i 7a==7
é;:shgi?ﬁfgfﬁ:&;&‘fg“:f‘;z ?b 7c <isLocatedin> 7a == 7a 33.33% 14.29% 64.29% 100 100
?b <dealsWith> ?a == ?a <dealsWith> 7b 100.00% 13.64% 16.32% 152 219
?b <hasCapital> 7f ?a <livesin= 72f == 7a <livesln= 7b 48.28% 13.49% 13.49% 2856 3209
?c <hasAcademicAdvisor> 7a ¢ <graduatedFroms ?b => ?a <worksAt> 7b 6.67% 13.44% 39.04% 552 552
7a <imports> 7b => 7a <exports> ?b 3.33% 13.10% 14.47% 94 94
?a <produced> ?b => 7a <directed> ?b 0.00% 11.26% 13.40% 16262 17185
?a <dealsWith> 7c 7¢ <imports> 7b => 7a <imports> 7b 46.43% 10.58% 14.88% 438 438
?c <1sCitizenOf= ?b 7a <influences> ?c == 73 <isCitizenOf> ?b 3.33% 10.56% 51.96% 1199 1199
7a <produced> ?b => ?a <created= 7b 10.34% 10.06% 15.69% 16272 17463
7c <dealsWith> ?a 7¢c <imports> 7b => ?a <imports> b 26.67% 9.28% 14.10% 271 355
7a <worksAt> ?b => 7a <graduatedFrom= ?b 357% 8.99% 16.25% 217 2217
?a =diedIn> ?b => ?a <wasBornln= 7b 0.00% 8.85% 2253% 20196 20196
7a <exports> ?h => 7a <impors> ?b 3.45% 8.68% 10.33% 380 393

Results taken from: http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/amie yago2.html



http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/amie_yago2.html

Jointly embedding with logic rules Guo et al, 2016)

O Key idea

- Jointly embedding subject-relation-object triples and hard rules

O Jointly embedding framework
- Triples: Atomic formulae modeled by translation assumption

- Rules: Complex formulae modeled by t-norm fuzzy logics

O Entity embeddings
—————— - O Relation embeddings
@ Truth values in [0, 1]
Rules & Logical connectives

(Parls,Capltal Of,France) = (Paris,Located-In,France)



Jointly embedding with logic rules (cont.)

O Modeling triples

Translation assumption: s+ r = o
1

3vd

J!F(S:!"ﬂ‘! U): 1-— ”5"‘1'_0”!31 = [011]

O Modeling rules

T-norm fuzzy logics: Truth value of a complex formulae is a composition
of truth values of its constituents

I(fi = f2) =1(f1)-I(f2) —I(f1)+1
I(fiNfo= f3)=1(f1)-I(f2)-1(f3) —I(f1)-I(f2)+ 1
O Joint learning

Minimizing a global loss over both triples and rules

min Z Z max (0,y —I(f7) +I(f7))

fteF+ f—eF-

f* and f~ can be either atomic or complex formulae



Rule-guided embedding (Guo et al, 2018)

O Key idea

- Knowledge graph embedding with iterative guidance from soft rules

O Iterative learning framework

- Soft label prediction: Use current embeddings and soft rules to predict
soft labels for unlabeled triples

- Embedding rectification: Integrate both labeled and unlabeled triples to
update current embeddings

—{ Soft Label Prediction ~ J&—— Learning resources

 Labeled triples £ = {(x;, y,)}

soft labels

unlabeled triples

embeddings e Unlabeled triples U = {x,}
labeled triples

hard labels « Softrules F = {(f'pr/lp)} and

Ab( Embedding Rectification )7 groundings § = {gpq}




Rule-guided embedding (cont.)

Soft label prediction

soft label to truth value computed by
be predicted current embeddings

1 L
min 5 Z (S(Iu) —qb(:ru))Q +Cztqu @ soft label should stay close

) to truth value
T, €U

s.t. Ap (1 —7(gpq|S)) < &pgs Yagpg € G @ groundings of rule f, should
hold with confidence 4,

confidence level slackness to handle
of soft rule uncertainty

O Embedding rectification

min |£| Z IU\ Zf(m(ﬂu Ty))

@ loss of labeled triples @) loss of unlabeled triples
with their hard labels with their soft labels



Rule-guided embedding (cont.)

O Influence of confidence levels of soft rules on link prediction

0.78 — 1 T  + T ' T 1 — 1 T
7 ] \ — RUGE ]
0.76 - A \A\ ComplEx -
0.72 i
% . \\A =
S 0.70 - A \ i
0.68 - _
0.66 - e, -
064 T T T T | . I s 1

¥ T d T T Y T !
1.0 09 08 0.7 06 05 04 03 0.2 01
Confidence threshold

Soft rules (even those with moderate confidence levels) are highly beneficial



Main obstacle: Propositionalization

O First-order rules have to be propositionalized using entities in
knowledge graphs (grounding)

« First-order rule

Vx,y: (x, capitalOf, y) = (x,locatedln, y)
1 grounding
- Proposition rules
(Paris, capitalOf, France) = (Paris, locatedIn, France)
(Rome, capitalOf, Italy) = (Rome, locatedIn, Italy)
(Berlin, capitalOf, Germany) = (Berlin, locatedIn, Germany)
(Beijing, capitalOf, China) = (Beijing, locatedIn, China)

(Moscow, capitalOf, Russia) = (Moscow, locatedIn, Russia)

Scales exponentially with graph size (number of entities)



To avoid grounding: Reqularizing relation embeddings
O Key idea

- Modeling first-order rules by regularizing relation embeddings (using no
entity embeddings)

First-order rule
Vx,y: (x, rp,y) = (x, rq,y)

Any two entities linked by relation r, should also be linked by 7

Equivalent statement
Vs,0 € & f(s,1,,0) < f(s,15,0)
For any two entities s and o, if (s,1,, 0) is a valid triple with a high score,

then (s, 7, 0) with an even higher score will also be predicted as valid by
the embedding model



To avoid grounding: Regularizing relation embeddings (cont.)

O Applying to entity pair model (Demeester et al., 2016)
. Triple scoring function: f(s,r,0) = vi,v,

- Non-negative entity pair representation: v;, > 0,Vs,0 € £

Ve, SV, m Vs0€&: f(s,1,0)<f(s10)

O Applying to ComplEx (Ding et al., 2018)
- Triple scoring function: f(s,r,0) = Re(sTdiag(r)o)

- Non-negative entity representation: Re(e) = 0,Im(e) >0, Ve € £

Re(ry) = Re(r,)

Im(rp) _ Im(rq) m Vs,0€&: f(s, Ty) 0) < f(s, rq,o)

Pros: Complexity independent of graph size

Cons: Can only handle rules in the simplest form vx,y: (x,7,y) = (x,7,,)



To avoid grounding: Regularizing relation embeddings (cont.)

O Visualization of relation embeddings learned by regularizing
ComplEx (Ding et al., 2018)

Real Cormponent Irmaginary Cornponent
counte -0.05 -0.10 -0.00 001 -0.08 40.00 EqUivalence
location_country -0.05% 0.02 -000 002 -00&8 0.00 Re(rp) — Re(rq)
swning_company —-0.06 -0.42 0. 030 0.0 -005 080 022 056 Im(rp) = Im(rq)

owner— -0.05 030 008 -005 020 022 057

spouse ™} - 0.15 010 9.00 0.00 -0.00 0,00 -0.00 Inversion
spouse - 0.15 .0l0 000 0.00 0.00 0.00 -0.00 Re(rp) = Re(rq)
child™! - 0.93 [ 045 013 -004 008 -021 -0.02 Im(rp) — _Im(rq)
parent - 0.33 - 045 013 0.04 008 0.20 0.02
position -0.09 021 -001 023 016  0.34 Imp“cation
honours 030 020 -001 023 0.16 0.85 Re(rp) S Re(rq)
offical [anguage -0.04 .88 -082 002 0.03 -0.01 Im(rp) — Im(rq)

language -0.04 0.23 -0.22 0.0 003 001




To avoid grounding: Adversarial training wineninietal, 2017

O Key idea

- Modeling first-order rules with adversarially generated entities rather
than real entities
Clause A: by (X1, Xa) A ba(Xa, X3) = h(Xy, X3)
O Adversarial training architecture s
- Adversary: Generate a set of adversarial
entity embeddings on which the rules
are violated most

 Discriminator: Learn an embedding model A e m| [ :
compatible with realinput (triples) while 2 v 777 X 7.....X...
satisfying the rules on the adversarial set w \S( 4 \ J

[ Link Predictor ][ Link Predictor ] [ Link Predictor ]

by h

/ ¥ ¥ f

. . - ' 3 hs h dnlhy h

Generating rather than traversing entities, ‘f’”"‘h“h‘)\\jb“" n 3}'/‘“ )
with complexity independent of graph size Tz (v, (b, h2) A éy, (B2, hy) = gn(hy, ha)]

Inconsistency Loss




Review

O Problem

- To learn distributed representations of entities and relations from extra
information beyond subject-relation-object triples

O Incorporating entity types
- Difficulty: hierarchical types and multiple type labels

O Incorporating textual descriptions
- Jointly embedding knowledge graphs and words

- Modeling entity embedding as a composition of word embeddings

O Incorporating relation paths

- Taking path as a sequence of relations, sequence modeling by addition,
multiplication, or RNN

- Intermediate entities may also be included during sequence modeling



Review (cont.)

O Incorporating logic rules
Hard rules versus soft rules

Difficulty: propositionalization (grounding)
Avoiding grounding by regularizing entity representations

Avoiding grounding by adversarial training
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